Design and Analysis of a Regio-Shuttle RS1 Diesel Railcar Converted to Fuel Cell Hybrid Propulsion

T. Schirmer, H. Dittus, A. Iraklis, M. Böhm, J. Pagenkopf, Dr. J. Winter
German Aerospace Center (DLR), Stuttgart & Berlin, Germany
Institute of Vehicle Concepts | Vehicle Energy Concepts
Contact: toni.schirmer@dlr.de

08th June 2018
Toni Schirmer
DLR
Agenda

1. DLR Overview
2. Next Generation Train (NGT)
3. Motivation
4. Approach
5. Boundary Conditions
6. Simulation
7. Design FC-EMU
8. Operation & H₂ Infrastructure
9. Conclusion & Outlook
Agenda

1. DLR Overview
2. Next Generation Train (NGT)
3. Motivation
4. Approach
5. Boundary Conditions
6. Simulation
7. Design FC-EMU
8. Operation & H₂ Infrastructure
9. Conclusion & outlook
DLR Overview

- Exploration of the Earth and the solar system
- Research aimed at protecting the environment
- Development of environmentally-friendly technologies to promote mobility, communication and security
- Approx. 8,000 employees
- 33 research institutes and facilities
- 20 locations
- Branch offices in Brussels, Paris, Tokyo and Washington
Agenda

1. DLR Overview
2. Next Generation Train (NGT)
3. Motivation
4. Approach
5. Boundary Conditions
6. Simulation
7. Design FC-EMU
8. Operation & H₂ Infrastructure
9. Conclusion & outlook
Next Generation Train (NGT)

Project overview

- Ultra-high – speed railcar passenger train (400 km/h)
 NGT HST

- High – speed railcar passenger train (230 km/h)
 NGT LINK

- Autonomous railcar freight train (400 km/h)
 NGT CARGO
Agenda

1. DLR Overview
2. Next Generation Train (NGT)
3. Motivation
4. Approach
5. Boundary Conditions
6. Simulation
7. Design FC-EMU
8. Operation & H₂ Infrastructure
9. Conclusion & outlook
Motivation
EU28: Line electrification and CO₂-emissions from railways

• 46% of railway lines were non electrified in 2012 [1]
• Service on these lines typically provided by diesel traction with significant CO₂-, NOₓ and PM emissions
• Example SBB in 2017 [2][3]:
 o Line electrification > 95%
 o Diesel energy consumption < 5%
 o But 35% of total CO₂-emissions
• Internal CO₂ - reduction target of UIC (baseline 1990) [4]:
 o by 2030: -50%
 o by 2050: -75%

• Alternative propulsion systems with zero emissions at point-of-use → Fuel Cell Hybrid propulsion system

Agenda

1. DLR Overview
2. Next Generation Train (NGT)
3. Motivation
4. Approach
5. Boundary Conditions
6. Simulation
7. Design FC-EMU
8. Operation & H₂ Infrastructure
9. Conclusion & outlook
Approach
Way of proceeding

Boundary conditions
(vehicle, line, gradients, speed, timetable)

Simulation
(longitudinal dynamic simulation, FC-Hybrid system)

Design FC-EMU
(components, packaging)

Infrastructure & Operation
Agenda

1. DLR Overview
2. Next Generation Train (NGT)
3. Motivation
4. Approach
5. **Boundary Conditions**
6. Simulation
7. Design FC-EMU
8. Operation & H₂ Infrastructure
9. Conclusion & outlook
Boundary Conditions
Reference vehicle 1/2

- Regional single-car DMU 650 ("Regio-Shuttle") with a fuel cell hybrid propulsion system as a case for simulation
- Following parameter set was used for the system design:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (empty)</td>
<td>42 t</td>
</tr>
<tr>
<td>Mass (fully loaded)</td>
<td>56 t</td>
</tr>
<tr>
<td>Maximum passenger number</td>
<td>155</td>
</tr>
<tr>
<td>Nominal power</td>
<td>2 x 228 kW</td>
</tr>
<tr>
<td>Maximum speed</td>
<td>120 km/h</td>
</tr>
<tr>
<td>Starting acceleration</td>
<td>1,20 m/s²</td>
</tr>
<tr>
<td>Average acceleration up to 50 km/h</td>
<td>0,98 m/s²</td>
</tr>
<tr>
<td>Driving range</td>
<td>approx. 1.200 km</td>
</tr>
</tbody>
</table>
Boundary Conditions
Reference vehicle 2/2

Diesel traction

Electric traction

Source: Voith – Triebwagen Regio Shuttle RS1 mit DIWA-Getriebe D864, Umkehrgetriebe V863, G 1471 d 8/2004 1000 MSW/WF
Boundary Conditions

Rail Network

- 4 lines are operated
 - WBA1 – 71.5 km
 - WBA2 – 14.5 km
 - WBA3 – 31.5 km
 - WBA4 – 24.8 km

- At least 8 vehicles (V) are needed
 - 5 V for WBA1 and WBA2
 - 1 V for WBA3
 - 2 V for WBA4
 - Double and triple traction is not considered
 - V names in presentation: A, B, C, D, E, F, G, H

- Hydrogen refueling station in Zwiesel as a hub is recommended
Boundary Conditions

Timetable

- Timetable derived from Waldbahn schedule
Agenda

1. DLR Overview
2. Next Generation Train (NGT)
3. Motivation
4. Approach
5. Boundary Conditions
6. **Simulation**
7. Design FC-EMU
8. Operation & H₂ Infrastructure
9. Conclusion & outlook
Simulation
Design Constraints

• Balanced battery state of charge at start and end position
• Auxiliary power = 52 kW (constant)
• H_2 consumption
 • based on Hydrogenics HD30 curve
 • Calculated regarding operation with 50% passenger volume
• Efficiency of Battery charge/discharge (incl. DC/DC-converter) = 0.94

Hydrogenics HD30 Performance

Simulation Example

WBA1: Plattling - Bay. Eisenstein - Plattling

- Power [kW]
- Battery Energy [kWh]

- P_DC-FC [kW]
- P_DC-Batt [kW]
- E_Batt [kWh]
Agenda

1. DLR Overview
2. Next Generation Train (NGT)
3. Motivation
4. Approach
5. Boundary Conditions
6. Simulation
7. Design FC-EMU
8. Operation & H₂ Infrastructure
9. Conclusion & outlook
Design FC-EMU
Fuel Cell system

Fuel Cell

<table>
<thead>
<tr>
<th>Statistics Fuel Cell</th>
<th>Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{required} [kW]</td>
<td>A B C D E F G H</td>
</tr>
<tr>
<td>178 180 179 179 179 102 98 98</td>
<td></td>
</tr>
<tr>
<td>H_2-consumption 50% load [kg/km]</td>
<td>0,16 0,15 0,15 0,14 0,15 0,16 0,15 0,15</td>
</tr>
<tr>
<td>H_2-consumption 100% load [kg/km]</td>
<td>0,17 0,16 0,16 0,15 0,16 0,17 0,17 0,17</td>
</tr>
</tbody>
</table>

$\Rightarrow P_{\text{FC}} (7 \times \text{HD30}) = 210 \text{ kW}$

Source: www.hydrogenics.com
Design FC-EMU
Battery system

Battery

<table>
<thead>
<tr>
<th>Statistics Battery</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{\text{chg, max}}$ [kW]</td>
<td>627</td>
<td>627</td>
<td>627</td>
<td>627</td>
<td>627</td>
<td>627</td>
<td>627</td>
<td>627</td>
</tr>
<tr>
<td>$P_{\text{dchg, max}}$ [kW]</td>
<td>607</td>
<td>664</td>
<td>612</td>
<td>594</td>
<td>598</td>
<td>597</td>
<td>599</td>
<td>599</td>
</tr>
<tr>
<td>P_{RMS} [kW]</td>
<td>199</td>
<td>201</td>
<td>197</td>
<td>197</td>
<td>197</td>
<td>161</td>
<td>147</td>
<td>147</td>
</tr>
<tr>
<td>$E_{\text{Batt, use}}$ [kWh]</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>30</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>$E_{\text{Batt, throughput, day}}$ [kWh]</td>
<td>755</td>
<td>1.310</td>
<td>1.626</td>
<td>1.686</td>
<td>1.246</td>
<td>937</td>
<td>812</td>
<td>650</td>
</tr>
</tbody>
</table>

Source: www.Akasol.com

- 4 x Akasol AKM 18M NANO (12s1p)
 - $U = 583 – 907$ V
 - $E = 4 \times 36.8 \text{ kWh} = 147.2 \text{ kWh}$
 - $P_{\text{chg}}(10s) = 4 \times 184 \text{ kW} = 736 \text{ kW}$
 - $P_{\text{dchg}}(10s) = 4 \times 487 = 1.948 \text{ kW}$
 - $P_{\text{RMS}} = 4 \times 92 \text{ kW} = 368 \text{ kW}$

1 100% payload
2 50% payload
Design FC-EMU

Packaging concept

- As many H₂ tanks on available roof area as possible
- H₂ capacity = 165 kg
- Worst case demand at 100% load = 128 kg
- Sufficient energy on board for daily operation
- Approx. 1,100 kg heavier than DMU
Agenda

1. DLR Overview
2. Next Generation Train (NGT)
3. Motivation
4. Approach
5. Boundary Conditions
6. Simulation
7. Design FC-EMU
8. Operation & H_2 Infrastructure
9. Conclusion & outlook
Operation & H₂ Infrastructure
Hydrogen refueling infrastructure

• Full fill of one train max. 150 kg, a 8-train fleet would consume ~1,000 kg hydrogen per day (capacity of existing HRS for cars/buses: 4-40 kg per refueling)

• As a consequence, novel hydrogen refueling concepts for trains are required
• DLR works on identification of suitable refueling concepts and delivery options
 • on-site/off-site delivery
 • LH₂ vs. CGH₂
 • HRS costing
 • Production from renewables
 • Integrated energy
 • Advantage rail car: H₂-demand is plannable (kg, day, location)
Operation & H₂ Infrastructure

Operation

H₂-tank capacity during operation

<table>
<thead>
<tr>
<th>Time [h]</th>
<th>H₂-Tank capacity [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>180</td>
</tr>
<tr>
<td>12</td>
<td>160</td>
</tr>
<tr>
<td>24</td>
<td>140</td>
</tr>
<tr>
<td>36</td>
<td>120</td>
</tr>
<tr>
<td>48</td>
<td>100</td>
</tr>
<tr>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>72</td>
<td>60</td>
</tr>
<tr>
<td>84</td>
<td>40</td>
</tr>
<tr>
<td>96</td>
<td>20</td>
</tr>
<tr>
<td>108</td>
<td>0</td>
</tr>
</tbody>
</table>

Vehicle:

- A
- B
- C
- D
- E
- F
- G
- H

Refueling times (during night)

Refueling station with two dispenser is required
Agenda

1. DLR Overview
2. Next Generation Train (NGT)
3. Motivation
4. Approach
5. Use case
6. Results
7. Conclusion & outlook
Conclusion & Outlook

Conclusion

• This study basically proved the feasibility of converting the Regio-Shuttle into a FC-Hybrid railcar in compliance with a given timetable using the Waldbahn rail network as an example.
• Due to high space requirements of H₂-tanks, it is essential to consider a network of routes in a differentiated way.

Outlook

• Develop fuel cell and battery aging model to make a statement about the lifetime of these components.
• Investigate infrastructure and regional conditions regarding H₂ supply/production.
• Calculate costs for components, conversion and operation → compare with DMU.
• Calculate greenhouse gas emission savings for using FC-EMU instead of DMU on Waldbahn railway network.
Thank you for your attendance!

Questions?

Toni Schirmer, M.Sc.
Institute of Vehicle Concepts
toni.schirmer@dlr.de