A Reduced Scale Mobile HFC Power Generating Unit for a Hybrid Propulsion System of a Park Railway Train

Alexander Schimanofsky
RCC Railway Competence and Certification

13th International Hydrail Conference, Rome, June 6-8, 2018
Content:

• Introduction of RCC
• Project History
• Operation Environment
• Train Configuration
• Performance Requirements
• Hardware Selection
• The Solution
• Next Steps
• Impressions
Introduction of RCC:

Certification/Homologation of Railway Vehicles
Accredited Conformity Assessment Body

• Notified Body (NoBo) – Assessments of railway vehicles according to TSI
• Assessment Body (AsBo) – Independent safety assessments according to the CSM
• ECM Certification Body – Cerification of Railway Maintenance Organisations

Clean Rail Technology

• Systemic Consultancy – focused on rail, based on the integrated energy approach
• Development of fuel cell- and hybrid propulsion systems
• Support/project development regarding hydrogen solutions, logistics and homologation
Project History

Original Task in late 2017: Supply an HFC Power Generating Unit

• Power supply for track side measuring equipment (e.g. noise measurements)

• Replacement of Diesel based power units for temporary onboard measuring equipment

• (Back up) power supply for temporary work infra structure
Project History

On Top Tasks (early 2018)

• Build a hydrogen hybrid locomotive to be presented at the 90th anniversary of the Liliputbahn in Vienna

• Present the hydrogen train as an ÖBB-promotion during TRA in Vienna, April 16-19, 2018

• Project Kick Off: February 2018

→ Challenge: Complete Project realization within 9 weeks!!!
Operation Environment

The Vienna „Liliputbahn im Prater“

- 4km / 20min per round trip → 15kph / 10mph average running speed
- Gauge: 381mm (15”)
- Minimum radius 20m
- 4 stops
- Maximum grade 14‰
- approx. 170,000 passengers/year
Train Configuration

Three Vehicle Consist, total weight approx. 5,0t

- **Locomotive**
 - Based on an existing frame
 - New car body
 - New bogies
 - Pneumatic brake
 - Wheel diameter: 235mm
 - Weight: approx. 2,3t
 - Mech. part built by TEMO

- **Tender**
 - Existing flat car
 - Pneumatic brake
 - Weight: approx. 0,5t
 - Carries the pallet mounted HFC PGU

- **Parlor Car**
 - Up to 16 passengers
 - Pneumatic brake
 - Max. Weight: approx. 2,2t
 - Originating from 1928
 - Modernized 2015
Performance Requirements

Train consist and show case application determine system parameters

→ Simulation of operating cycles
→ Matching of batteries and FC

<table>
<thead>
<tr>
<th>Assumptions:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>display track length:</td>
<td>100m</td>
</tr>
<tr>
<td>time for one display run:</td>
<td>60s</td>
</tr>
<tr>
<td>full parlor car:</td>
<td>16 persons</td>
</tr>
<tr>
<td>mass:</td>
<td>4,800kg</td>
</tr>
<tr>
<td>v_max:</td>
<td>15kph</td>
</tr>
<tr>
<td>v_max:</td>
<td>4,17m/s</td>
</tr>
<tr>
<td>F_max:</td>
<td>1,472N</td>
</tr>
<tr>
<td>a_max:</td>
<td>0,31m/s^2</td>
</tr>
<tr>
<td>t_acc:</td>
<td>13,59s</td>
</tr>
<tr>
<td>s_acc:</td>
<td>28,3m</td>
</tr>
</tbody>
</table>
Hardware Selection

Main Questions:
• How can we streamline the system to minimize risk?
• What is available off the shelf?
• Which components must be project specific?

First Decisions:
→ Hydrogenics HD8/200 is in stock and fits into main requirements
→ Standard BLDC traction motors / motor controllers to minimize drive train design works
→ Floating DC bus between FC and battery saves one customized DC/DC converter
→ No way around customized DC/DC converters for auxiliaries and sensor power supply
→ Industry standard main controller instead of railway specific controller
The Solution – a Modular Concept

• Pallet Mounted Power Supply Module
 - FC module (FC, BOP, 2x DC/DC, master switch, master controller, load contactors, fuses, cutout, H2 and pressure sensors, safety valve etc.)
 - tank module (type 3 tank, TPRD, pressure regulator, H2 sensors, tank receptacle)
 - additional storage box for refueling equipment (from cylinder bundles, easy to use)

• Traction module („Locomotive“)
 - drive controls
 - pneumatic equipment and ballast
 - traction motors and batteries

• Electric interfaces
 - High voltage connection
 - 24V power supply connection
 - Sensor and indicator wires
 - Emergency shut off
The Solution – System Parameters

• Fuel Cell
 - Peak power: 10kW
 - Continuous power: 8.5kW
 - Power Output: 40-70VDC
 - Maximum current: 160A

• Battery
 - 5 x lead acid battery
 - Voltage: 12V
 - Capacity: 75Ah each

• Locomotive Parameters
 - 2 traction motors
 - 2-stage mech. transmission
 - electric air compressor
 - full cab controls

• Hydrogen Storage
 - Storage pressure: 200bar
 - 85l type 3 tank
 - 1.17kg of Hydrogen
 - 38kWh of stored energy

• Traction motor / controller
 - BLDC technology
 - Rated power: 5kW
 - Maximum power: 7.5 kW
 - Input up to 80VDC
 - Weight: 11.6kg
Next Steps

• Further presentations
 - June 11, 2018: 8. vie-mobility Symposium, Vienna
 - June 12, 2018: RailContact 2018, Graz/Oberwart
 - June 16, 2018: Private excursion to the Liliputbahn, Vienna

• Definition of use – short term / long term
 - further use on the Liliputbahn
 - get back to originally intended utilization
 - alternative use cases

• System Upgrades
 - Adoption of (electric) interfaces for future use if necessary
 - Modification from „presentation conditions“ unit into „working conditions“
 - CE Certification of FC-module (tank module already has CE)

→ And then: Let‘s go for something bigger!!!
And now:

Let me take you on a ride through the Vienna Prater with Austria‘s first hydrogen powered train!
Thank you for Your Attention!

www.rcc-rail.com / +43 664 5478933 / office@rcc-rail.com
Waagner-Biro-Strasse 125 / 8020 Graz / Austria