11th International Hydrail Conference

HYDROGEN FOR RAILWAY TRACTION: A PHD AT THE BIRMINGHAM CENTRE FOR RAILWAY RESEARCH AND EDUCATION

Andreas Hoffrichter, PhD
Railway Research and Education
Department of Supply Chain Management
The Eli Broad College of Business
Michigan State University
Lansing, Michigan, USA
Andreash@msu.edu

Birmingham: July 4, 2016
Contents

• Interest in Railways and Energy
• Traditional Propulsion Choices
• Hydrogen as an Energy Carrier for Transportation
• Doctoral Research an the Birmingham Centre for Railway Research and Education
• Recent Hydrail Research
• Conclusion

Acknowledgment:
Thanks to Dr. David J. Closs, Dr. Yemisi Bolumole & Dr. John Macdonald for their insights and guidance.
Interest in Railways, Energy, and the Environment

• Interested in railways as long as I can remember

• Long interest in energy and electricity

• Early interest in nature and the environment

• First longer-term employment was as a banker (Bankkaufman) after advanced apprenticeship degree
Interest in Railways and Energy (1)

• Followed more business and management path with a Bachelor degree in Transport Management at Aston University
 – Link to railway interest with previous banking experience
 – Final year project in discontinuous electrification from a visual impact perspective

 – Research desire to find an alternative to continuous wayside electrification due to cost and visual impact

 – Two possible PhD research ideas:
 ➢ Advanced, lower-infrastructure requirement electrification
 ➢ Hydrogen as an energy carrier

 – PhD proposal for hydrogen idea developed with final year project advisor

• PhD at the Birmingham Centre for Railway Research and Education
Contents

• Interest in Railways and Energy
• Traditional Propulsion Choices
• Hydrogen as an Energy Carrier for Transportation
• Doctoral Research at the Birmingham Centre for Railway Research and Education
• Recent Hydrail Research
• Conclusion

Acknowledgment:
Thanks to Dr. David J. Closs, Dr. Yemisi Bolumole & Dr. John Macdonald for their insights and guidance.
Traditional Propulsion Choices

- **Steam (start: early/mid 1800s)**
 - Start of ‘modern’ railway
 - Usually locomotives
 - Does not require continuous wayside power infrastructure
 - Often lower thermal efficiency than diesel
 - Relatively high maintenance expenses

- **Wayside Electric (start: late 1800s)**
 - First commercial use in trams
 - Eliminated exhaust emissions at the point-of-use
 - Multiple unit (railcar) trains possible
 - Best traction characteristics
 - High on-train conversion efficiency
 - High well-to-wheel efficiency possible
 - Requires continuous wayside power infrastructure
 - Several primary energy sources available (e.g., hydro, wind, coal, nuclear, etc.)
Traditional Propulsion Choices (2)

• Diesel (start: early/mid 1900s)
 – Globally, most common type of diesel drive system is diesel-electric
 – Effectively an electric system with on-board power plant
 – High efficiency possible (largely dependent on duty cycle)
 – Limited power due to diesel engine size and mass
 – Locomotive or multiple unit
 – Only one fuel choice
 – Emissions at the point-of-use
 – Does not require continuous wayside power infrastructure
Traditional Propulsion Choices (3): Wayside Electric Drawbacks

- Costly
 - continuous wayside power infrastructure necessary
 - approx. GBP 1 million per track kilometer
 - economy-of-scale necessary, i.e., high train density on infrastructure, for economic viability

- Visual impact
 - particularly a problem in historic urban areas
 - led to alternative developments, e.g., induction, linear motors, ground-level supply

- Potential for lower resilience
 - power cut can affect several trains and potentially the entire network (e.g. North East US power cut, Swiss railways transmission problems)

- Power infrastructure can be affected by weather, e.g.:
 - high winds (e.g., east coast main line, UK)
 - ice on conductor line (e.g., Germany main lines, US tram networks) – frequent ice breaker trains run, especially at non-service times (e.g., at night)
Traditional Propulsion Choices (4): Diesel Drawbacks

• Reliance on a single fuel source
 – Direct, strong impact on operating cost
 ➢ Led to exploration of alternatives, e.g. Natural Gas
 – Railway has little control over prices
 – Energy security can be a problem in some regions (e.g., Europe)

• Exhaust emissions
 – Combustion of diesel at the point-of-use
 – Contributes to greenhouse effect
 – Exhaust is carcinogenic
 – Exhaust contributes to SMOG
Recent Mainline Propulsion: Natural Gas

- Several developments of the technology
- Russia
 - Gas turbine, Liquefied Natural Gas (LNG)
 - Combustion engine, Compressed Natural Gas (CNG)
- North America
 - Combustion engine, CNG for switchers
 - Combustion engine, LNG for mainline
 - Florida East Coast Railway plans to run entire mainline fleet on Natural Gas by the end of the year
 - Several projects on Class I railroads
 - LNG usually requires a contribution of diesel (e.g., 80% NG, 20% diesel)
- Developments primarily driven by high diesel prices in the recent past
- Exhaust emissions at the point-of-use
 - After treatment required to meet exhaust emission legislation in several regions (e.g., US, EU)
Contents

• Interest in Railways and Energy
• Traditional Propulsion Choices
• Hydrogen as an Energy Carrier for Transportation
• Doctoral Research an the Birmingham Centre for Railway Research and Education
• Recent Hydrail Research
• Conclusion

Acknowledgment:
Thanks to Dr. David J. Closs, Dr. Yemisi Bolumole & Dr. John Macdonald for their insights and guidance.
Hydrogen as an Energy Carrier for Transportation

• Hydrogen (H₂) is not a energy source
 – Does not occur in large quantities on it’s own on Earth
 – Has to be split from chemical compounds with energy input
 – Many different feedstocks available (hydrocarbons, e.g., coal, oil, natural gas) and splitting of water (electricity or heat) possible
 – Similar to electricity (has to be ‘created’ with energy input), hydrogen is an energy carrier
 – One of only two chemical energy carriers / fuels that does not contain carbon (the other is anhydrous ammonia, NH₃)

• Some characteristics of hydrogen
 – Non-toxic
 – Not a greenhouse gas, and does not release any harmful emissions during combustion with oxygen
 – Highest energy density per mass
 – Low energy density per volume
 – Low radiant heat
 – Very common on Earth in compounds (e.g., water)
Hydrogen as an Energy Carrier for Transportation (2)

• Hydrogen storage
 – large quantities can be stored over long periods of time relatively easily compared to electricity
 – BUT difficult to store compared to liquid fuels (diesel, gasoline)
 – Compression, liquefaction, or hydride storage necessary to achieve acceptable range

• Can be used in a fuel cell
 – Only produces, electricity, heat, and water as exhaust
 – High chemical to electrical conversion efficiency

• High duty cycle efficiency for transport vehicles possible

• High well-to-wheel efficiency possible

• Low to near-zero carbon emissions possible (only embedded carbon in equipment manufacture)

• Several applications in the transport sector
 – Buses
 – Cars
 – Forklifts
Contents

• Interest in Railways and Energy
• Traditional Propulsion Choices
• Hydrogen as an Energy Carrier for Transportation
• Doctoral Research at the Birmingham Centre for Railway Research and Education
• Recent Hydrail Research
• Conclusion

Acknowledgment:
Thanks to Dr. David J. Closs, Dr. Yemisi Bolumole & Dr. John Macdonald for their insights and guidance.
Doctoral Research at Birmingham Centre for Railway Research and Education (BCRRE)

• Approached Dr. Stuart Hillmansen and Prof. Clive Roberts at the BCRRE with my research proposal for hydrogen as an energy carrier for railway traction

• We discussed the research idea for approximately 2 hours
 – Stuart and Clive offered me a PhD position verbally at the end of the discussion
 – Funding was not secure at this stage but potential was identified

• A funded PhD position with a more broader research area (including electric car re-charging infrastructure) was offered to me from another university

• Decided to go with BCRRE due to great rail expertise

• Two funding proposal were submitted and the Engineering and Physical Science Research Council (EPSRC) application was successful
Doctoral Research at BCRRE (2)

- Supervisors
 - Dr. Stuart Hillmansen
 - Prof. Clive Roberts

- Well-to-Wheel Analysis
 - Diesel
 - Wayside Electric
 - Hydrogen

- Prototype Hydrail Locomotive
 - Part of a team
 - First practical hydrogen locomotive in the UK
 - Performance evaluation

- Single Train Simulation
 - Diesel
 - Hydrogen
 - Hydrogen-hybrid

- Overall
 - great experience
 - won prize for the best PhD in 2013 in the School of Electronic, Electrical and Computer Engineering

- Support
 - EPSRC funded
 - Assistance provided from Vehicle Projects Inc
Doctoral Research at BCRRE: Hydrogen Pioneer Locomotive

- Member of a team that developed, designed, and constructed a hydrogen-powered locomotive
- Was constructed for the IMechE railway challenge and for performance evaluation
- First practical hydrogen-powered locomotive in the UK
- Hydrogen-hybrid
 - 1.1 kW PEM Fuel Cell
 - Lead-acid batteries
 - 4.4 kW traction motors

Doctoral Research at BCRRE: Performance Evaluation of Hydrogen Pioneer

- Several test runs with different maximum speeds
- Hydrogen-hybrid concept feasible
- Locomotive has since been further developed

Doctoral Research at BCRRE:
Conceptual Design of a Hydrogen Regional Train

- All trains have a similar journey time
- Hydrogen-hybrid propulsion equipment and storage tanks can be accommodated without significant impact on passenger saloon
- Energy requirement reductions for the journey compared to diesel: 34% hydrogen-only, 55% hydrogen-hybrid (LHV)
- Well-to-wheel carbon reductions compared to diesel: 55% hydrogen-only, 72% hydrogen-hybrid, assuming that all the hydrogen is produced from natural gas (LHV)

Contents

• Interest in Railways and Energy
• Traditional Propulsion Choices
• Hydrogen as an Energy Carrier for Transportation
• Doctoral Research at the Birmingham Centre for Railway Research and Education
• Recent Hydrail Research
• Conclusion

Acknowledgment:
Thanks to Dr. David J. Closs, Dr. Yemisi Bolumole & Dr. John Macdonald for their insights and guidance.
Recent and Ongoing Hydrail Research

• Single Train Simulator development at WMG (The University of Warwick)
 – Takes into account component efficiency maps
 – More accurate vehicle efficiency determination for maximum and duty cycle

• Part of a collaboration for a Future Railway feasibility study
 – Funded feasibility study
 – Team at WMG conducted simulation over various routes and several train configurations

• Collaboration with the University of California at Davis
 – Case study on the Capitol Corridor trains comparing several options including diesel benchmark
 – High-power locomotive-hauled bi-level coaches
 ➢ ~3280 kW (4400hp) diesel prime mover
 ➢ 290 kN max. tractive effort
 ➢ ~8300 l diesel fuel tank capacity
 – More detail provided by Raphael Isaac’s presentation at this conference

• Supervision of a MSc student that considered safety aspects of hydrail
Conclusion

• Long interest in railways, energy, and the environment
 – Hydrail combines these interests

• PhD research at BCRRE
 – Interesting and successful
 – Hydrogen is a feasible energy carrier for railway propulsion
 – Eliminates harmful emissions at the point-of-use
 – Can reduce overall WTW emissions

• Recent projects
 – Higher-power case study in California
 – Several hydrail projects going on, globally

• Future
 – Economic evaluation
 – Investigation of different service types (e.g., switchers, freight)